Analyzing Return Distributions#
In this guide, we’ll demonstrate how to fetch financial data using the moabdb API, calculate daily returns, and then visualize the
return distributions using the popular matplotlib and seaborn libraries.
Prerequisites#
You will need matplotlib, seaborn, and numpy installed. Install them with:
pip install matplotlib seaborn numpy
Fetching Data from MoabDB#
First, let’s retrieve historical closing prices for a given stock (e.g., AAPL):
import moabdb as mdb
# Constants for flexibility
TICS = ['AAPL','MSFT','TSLA','NVDA']
SAMPLE = '5y'
# Fetching data
data_df = mdb.get_equity(tickers=TIC, sample=SAMPLE)
Calculate Daily Returns#
To understand return distributions, we then need to calculate daily returns:
# Calculate daily returns
return_df = data_df['Close'].pct_change().dropna()
Visualizing Return Distributions#
With the daily returns we can plot their distribution:
import matplotlib.pyplot as plt
import seaborn as sns
# Set style
sns.set_style('whitegrid')
# Histogram of daily returns
plt.figure(figsize=(10,6))
sns.histplot(data_df['Daily_Return'].dropna(), bins=100, color='blue')
plt.title('Distribution of Daily Returns for ' + TIC)
plt.xlabel('Daily Return')
plt.ylabel('Frequency')
plt.tight_layout()
plt.show()
This visualization offers insights into the volatility and risk associated with the stock. A wider distribution implies more volatility.
Considerations#
The daily return distribution can be useful for understanding risk and return characteristics.
Always be cautious when interpreting these visualizations; past performance is not indicative of future results.